Detection of proteins with ascorbic acid-capped gold nanoparticles: a simple and highly sensitive colorimetric assay.
Maximilian BeyerColby HladunFadi Bou-AbdallahPublished in: Analytical methods : advancing methods and applications (2024)
We report a simple and highly sensitive colorimetric method for the detection and quantification of proteins, based on the aggregation of ascorbic acid (AA) capped gold nanoparticles (AuNPs) by proteins. The interactions between our AuNPs and nine different proteins of various sizes and shapes (cytochrome C (12 kDa), lysozyme (14.3 kDa), myoglobin (17 kDa), human serum albumin (66 kDa), bovine serum albumin (66.4 kDa), human transferrin (80 kDa), aldolase (160 kDa), catalase (240 kDa), and human H-ferritin (500 kDa)) generated similar AuNPs-protein absorption spectra in a concentration-dependent manner in the range of 1-15 nM. Upon the addition of a protein, the UV-visible spectra of AuNPs-protein conjugates shifted from 524 nm for the AuNps alone to longer wavelength (600-750 nm) due to the presence of one of these proteins. This bathochromic shift is accompanied by a color change from a cherry red, to dark purple, and then light grey or colorless if excess protein has been added, indicating the formation of AuNPs-protein conjugates followed by protein-induced aggregation of the AuNPs. High-resolution transmission electron microscopy images revealed uniformly distributed spherical nanoparticles with an average size of 27.5 ± 15.2 nm, increasing in size to 39.6 ± 12.9 nm upon the addition of a protein, indicating the formation of AuNPs-protein conjugates in solution. A general mechanism for the protein-induced aggregation of our AuNPs is proposed. The consistent behavior observed with the nine proteins tested in our study suggests that our assay can be universally applied for the quantification of pure proteins in a solution, regardless of size, shape, or molecular weight.