Login / Signup

Co-translational assembly of mammalian nuclear multisubunit complexes.

Ivanka KamenovaPooja MukherjeeSascha ConicFlorian MuellerFarrah El-SaafinPaul BardotJean-Marie GarnierDoulaye DembeleSimona CapponiH T Marc TimmersStephane D VincentLàszlò Tora
Published in: Nature communications (2019)
Cells dedicate significant energy to build proteins often organized in multiprotein assemblies with tightly regulated stoichiometries. As genes encoding subunits assembling in a multisubunit complex are dispersed in the genome of eukaryotes, it is unclear how these protein complexes assemble. Here, we show that mammalian nuclear transcription complexes (TFIID, TREX-2 and SAGA) composed of a large number of subunits, but lacking precise architectural details are built co-translationally. We demonstrate that dimerization domains and their positions in the interacting subunits determine the co-translational assembly pathway (simultaneous or sequential). The lack of co-translational interaction can lead to degradation of the partner protein. Thus, protein synthesis and complex assembly are linked in building mammalian multisubunit complexes, suggesting that co-translational assembly is a general principle in mammalian cells to avoid non-specific interactions and protein aggregation. These findings will also advance structural biology by defining endogenous co-translational building blocks in the architecture of multisubunit complexes.
Keyphrases
  • genome wide
  • transcription factor
  • amino acid
  • dna methylation
  • gene expression
  • cell cycle arrest
  • hepatitis c virus
  • human immunodeficiency virus
  • pi k akt