Login / Signup

The molecular genetics of nELAVL in brain development and disease.

Meghan R MulliganLouise S Bicknell
Published in: European journal of human genetics : EJHG (2023)
Embryonic development requires tight control of gene expression levels, activity, and localisation. This control is coordinated by multiple levels of regulation on DNA, RNA and protein. RNA-binding proteins (RBPs) are recognised as key regulators of post-transcriptional gene regulation, where their binding controls splicing, polyadenylation, nuclear export, mRNA stability, translation rate and decay. In brain development, the ELAVL family of RNA binding proteins undertake essential functions across spatiotemporal windows to help regulate and specify transcriptomic programmes for cell specialisation. Despite their recognised importance in neural tissues, their molecular roles and connections to pathology are less explored. Here we provide an overview of the neuronal ELAVL family, noting commonalities and differences amongst different species, their molecular characteristics, and roles in the cell. We bring together the available molecular genetics evidence to link different ELAVL proteins to phenotypes and disease, in both the brain and beyond, including ELAVL2, which is the least studied ELAVL family member. We find that ELAVL-related pathology shares a common neurological theme, but different ELAVL proteins are more strongly connected to different phenotypes, reflecting their specialised expression across time and space.
Keyphrases