Login / Signup

Breast Tumor Classification in Ultrasound Images by Fusion of Deep Convolutional Neural Network and Shallow LBP Feature.

Hua ChenMinglun MaGang LiuYing WangZhihao JinChong Liu
Published in: Journal of digital imaging (2023)
Breast cancer is one of the most dangerous and common cancers in women which leads to a major research topic in medical science. To assist physicians in pre-screening for breast cancer to reduce unnecessary biopsies, breast ultrasound and computer-aided diagnosis (CAD) have been used to distinguish between benign and malignant tumors. In this study, we proposed a CAD system for tumor diagnosis using a multi-channel fusion method and feature extraction structure based on multi-feature fusion on breast ultrasound (BUS) images. In the pre-processing stage, the multi-channel fusion method completed the color conversion of the BUS image to make it contain richer information. In the feature extraction stage, the pre-trained ResNet50 network was selected as the basic network, and three levels of features were combined based on adaptive spatial feature fusion (ASFF), and finally, the shallow local binary pattern (LBP) texture features were fused. Support vector machine (SVM) was used for comparative analysis. A retrospective analysis was carried out, and 1615 breast tumor images (572 benign and 1043 malignant) confirmed by pathological examinations were collected. After data processing and augmentation, for an independent test set consisting of 874 breast ultrasound images (457 benign and 417 malignant), the accuracy, precision, recall, specificity, F1 score, and AUC of our method were 96.91%, 98.75%, 94.72%, 98.91%, 0.97, and 0.991, respectively. The results show that the integration of shallow LBP texture features and multi-level depth features can more effectively improve the comprehensive performance of breast tumor diagnosis, and has strong clinical application value. Compared with the past methods, our proposed method is expected to realize the automatic diagnosis of breast tumors and provide an auxiliary tool for radiologists to accurately diagnose breast diseases.
Keyphrases