Login / Signup

ZIF-8-Encapsulated Pexidartinib Delivery via Targeted Peptide-Modified M1 Macrophages Attenuates MDSC-Mediated Immunosuppression in Osteosarcoma.

Jiabao DongXupeng ChaiYucheng XueShiyun ShenZhuo ChenZetao WangEloy YinwangShengdong WangLiang ChenFengfeng WuHengyuan LiZehao ChenJianbin XuZhao-Ming YeXiongfeng LiQian Lu
Published in: Small (Weinheim an der Bergstrasse, Germany) (2024)
Adoptive cellular therapy is a promising strategy for cancer treatment. However, the effectiveness of this therapy is limited by its intricate and immunosuppressive tumor microenvironment. In this study, a targeted therapeutic strategy for macrophage loading of drugs is presented to enhance anti-tumor efficacy of macrophages. K7M2-target peptide (KTP) is used to modify macrophages to enhance their affinity for tumors. Pexidartinib-loaded ZIF-8 nanoparticles (P@ZIF-8) are loaded into macrophages to synergistically alleviate the immunosuppressive tumor microenvironment synergistically. Thus, the M1 macrophages decorated with KTP carried P@ZIF-8 and are named P@ZIF/M1-KTP. The tumor volumes in the P@ZIF/M1-KTP group are significantly smaller than those in the other groups, indicating that P@ZIF/M1-KTP exhibited enhanced anti-tumor efficacy. Mechanistically, an increased ratio of CD4+ T cells and a decreased ratio of MDSCs in the tumor tissues after treatment with P@ZIF/M1-KTP indicated that it can alleviate the immunosuppressive tumor microenvironment. RNA-seq further confirms the enhanced immune cell function. Consequently, P@ZIF/M1-KTP has great potential as a novel adoptive cellular therapeutic strategy for tumors.
Keyphrases