Login / Signup

A General Principle for DUV NLO Materials: π-Conjugated Confinement Enlarges Band Gap*.

Lin XiongLi-Ming WuLing Chen
Published in: Angewandte Chemie (International ed. in English) (2021)
Current nonlinear optical materials face a conventional limitation in the trade-off between the band gap and birefringence, especially in the deep UV spectral region. To circumvent this dilemma, we propose a general principle, π-conjugated confinement, to partially decouple the interunit π-conjugated interactions by the separation of non-π-conjugated units. The goal is to further enlarge the band gap to a value larger than that of the singular π-conjugated counterpart and to maintain a suitable density of π-conjugated units to gain a large optical anisotropy. We reveal that π-conjugated confinement is a shared structural feature for all DUV NLO materials known to date, and thus, it provides a novel and essential design criterion for future design synthesis. Guided by this principle, the carbonophosphates are predicted to be a new promising DUV candidate system. Sr3 Y[PO4 ][CO3 ]3 (1) and Na3 X[PO4 ][CO3 ] (X=Ba, Sr, Ca, Mg, 2-5) exhibit not only greatly enhanced birefringence that is 3-24 times larger than that of singular phosphates but also enhanced band gaps that are 0.2-1.7 eV wider than those of singular carbonates.
Keyphrases
  • photodynamic therapy
  • high resolution
  • machine learning
  • magnetic resonance imaging
  • gene expression
  • magnetic resonance
  • protein kinase