Login / Signup

Small RNA molecules and their role in plant disease.

Laura E RoseElysa J R OverdijkMireille van Damme
Published in: European journal of plant pathology (2018)
All plant species are subject to disease. Plant diseases are caused by parasites, e.g. viruses, bacteria, oomycetes, parasitic plants, fungi, or nematodes. In all organisms, gene expression is tightly regulated and underpins essential functions and physiology. The coordination and regulation of both host and pathogen gene expression is essential for pathogens to infect and cause disease. One mode of gene regulation is RNA silencing. This biological process is widespread in the natural world, present in plants, animals and several pathogens. In RNA silencing, small (20-40 nucleotides) non-coding RNAs (small-RNAs, sRNAs) accumulate and regulate gene expression transcriptionally or post-transcriptionally in a sequence-specific manner. Regulation of sRNA molecules provides a fast mode to alter gene activity of multiple gene transcripts. RNA silencing is an ancient mechanism that protects the most sensitive part of an organism: its genetic code. sRNA molecules emerged as regulators of plant development, growth and plant immunity. sRNA based RNA silencing functions both within and between organisms. Here we present the described sRNAs from plants and pathogens and discuss how they regulate host immunity and pathogen virulence. We speculate on how sRNA molecules can be exploited to develop disease resistant plants. Finally, the activity of sRNA molecules can be prevented by proteins that suppress RNA silencing. This counter silencing response completes the dialog between plants and pathogens controlling plant disease or resistance outcome on the RNA (controlling gene expression) and protein level.
Keyphrases