Alkali Metals Activated High Entropy Double Perovskites for Boosted Hydrogen Evolution Reaction.
Ning SunZhuangzhuang LaiWenbo DingWenbo LiTianyi WangZhichuan ZhengBowen ZhangXiangjiang DongPeng WeiPeng DuZhiwei HuChih-Wen PaoWei-Hsiang HuangHaifeng WangMing LeiKai HuangRunze YuPublished in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2024)
An efficient and facile water dissociation process plays a crucial role in enhancing the activity of alkaline hydrogen evolution reaction (HER). Considering the intricate influence between interfacial water and intermediates in typical catalytic systems, meticulously engineered catalysts should be developed by modulating electron configurations and optimizing surface chemical bonds. Here, a high-entropy double perovskite (HEDP) electrocatalyst La 2 (Co 1/6 Ni 1/6 Mg 1/6 Zn 1/6 Na 1/6 Li 1/6 )RuO 6 , achieving a reduced overpotential of 40.7 mV at 10 mA cm -2 and maintaining exemplary stability over 82 h in a 1 m KOH electrolyte is reported. Advanced spectral characterization and first-principles calculations elucidate the electron transfer from Ru to Co and Ni positions, facilitated by alkali metal-induced super-exchange interaction in high-entropy crystals. This significantly optimizes hydrogen adsorption energy and lowers the water decomposition barrier. Concurrently, the super-exchange interaction enhances orbital hybridization and narrows the bandgap, thus improving catalytic efficiency and adsorption capacity while mitigating hysteresis-driven proton transfer. The high-entropy framework also ensures structural stability and longevity in alkaline environments. The work provides further insights into the formation mechanisms of HEDP and offers guidelines for discovering advanced, efficient hydrogen evolution catalysts through super-exchange interaction.
Keyphrases
- electron transfer
- metal organic framework
- highly efficient
- transition metal
- room temperature
- magnetic resonance imaging
- ionic liquid
- computed tomography
- climate change
- oxidative stress
- anaerobic digestion
- solar cells
- quantum dots
- diabetic rats
- gold nanoparticles
- endothelial cells
- signaling pathway
- human health
- high glucose
- reduced graphene oxide
- stress induced