Login / Signup

Comparison of Metal-Based PZT and PMN-PT Energy Harvesters Fabricated by Aerosol Deposition Method.

Chao-Ting ChenShun-Chiu LinUrška GaborMatjaž SpreitzerWen-Jong Wu
Published in: Sensors (Basel, Switzerland) (2021)
In this study, polycrystalline lead magnesium niobate-lead titanate (PMN-PT) was explored as an alternative piezoelectric material, with a higher power density for energy harvesting (EH), and comprehensively compared to the widely used polycrystalline lead zirconate titanate (PZT). First, the size distribution and piezoelectric properties of PZT and PMN-PT raw powders and ceramics were compared. Thereafter, both materials were deposited on stainless-steel substrates as 10 μm thick films using the aerosol deposition method. The films were processed as {3-1}-mode cantilever-type EH devices using microelectromechanical systems. The films with different annealing temperatures were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and dielectric behavior measurements. Furthermore, the mechanical and electrical properties of PMN-PT- and PZT-based devices were measured and compared. The PMN-PT-based devices showed a higher Young's modulus and lower damping ratio. Owing to their higher figure of merit and lower piezoelectric voltage constant, they showed a higher power and lower voltage than the PZT-based devices. Finally, when poly-PMN-PT material was the active layer, the output power was enhanced by 26% at the 0.5 g acceleration level. Thus, these devices exhibited promising properties, meeting the high current and low voltage requirements in integrated circuit designs.
Keyphrases
  • electron microscopy
  • high resolution
  • room temperature
  • computed tomography
  • single molecule
  • magnetic resonance
  • magnetic resonance imaging
  • simultaneous determination
  • dual energy