The exact density distribution of the nonlinear least squares estimator in the one-parameter regression model is derived in closed form and expressed through the cumulative distribution function of the standard normal variable. Several proposals to generalize this result are discussed. The exact density is extended to the estimating equation (EE) approach and the nonlinear regression with an arbitrary number of linear parameters and one intrinsically nonlinear parameter. For a very special nonlinear regression model, the derived density coincides with the distribution of the ratio of two normally distributed random variables previously obtained by Fieller (1932), unlike other approximations previously suggested by other authors. Approximations to the density of the EE estimators are discussed in the multivariate case. Numerical complications associated with the nonlinear least squares are illustrated, such as nonexistence and/or multiple solutions, as major factors contributing to poor density approximation. The nonlinear Markov-Gauss theorem is formulated based on the near exact EE density approximation.