High-Performance Zinc Tin Oxide Semiconductor Grown by Atmospheric-Pressure Mist-CVD and the Associated Thin-Film Transistor Properties.
Jozeph ParkKeun-Tae OhDong-Hyun KimHyun-Jun JeongYun Chang ParkHyun-Suk KimJin-Seong ParkPublished in: ACS applied materials & interfaces (2017)
Zinc tin oxide (Zn-Sn-O, or ZTO) semiconductor layers were synthesized based on solution processes, of which one type involves the conventional spin coating method and the other is grown by mist chemical vapor deposition (mist-CVD). Liquid precursor solutions are used in each case, with tin chloride and zinc chloride (1:1) as solutes in solvent mixtures of acetone and deionized water. Mist-CVD ZTO films are mostly polycrystalline, while those synthesized by spin-coating are amorphous. Thin-film transistors based on mist-CVD ZTO active layers exhibit excellent electron transport properties with a saturation mobility of 14.6 cm2/(V s), which is superior to that of their spin-coated counterparts (6.88 cm2/(V s)). X-ray photoelectron spectroscopy (XPS) analyses suggest that the mist-CVD ZTO films contain relatively small amounts of oxygen vacancies and, hence, lower free-carrier concentrations. The enhanced electron mobility of mist-CVD ZTO is therefore anticipated to be associated with the electronic band structure, which is examined by X-ray absorption near-edge structure (XANES) analyses, rather than the density of electron carriers.