Login / Signup

Ultrafast Carrier Dynamics of the Exciton and Trion in MoS2 Monolayers Followed by Dissociation Dynamics in Au@MoS2 2D Heterointerfaces.

Tanmay GoswamiRenu RaniKiran Shankar HazraHirendra N Ghosh
Published in: The journal of physical chemistry letters (2019)
Many-body states like excitons, biexcitons, and trions play an important role in optoelectronic and photovoltaic applications in 2D materials. Herein, we studied carrier dynamics of excitons and trions in monolayer MoS2 deposited on a SiO2/Si substrate, before and after Au NP deposition, using femtosecond transient absorption spectroscopy. Luminescence measurements confirm the presence of both an exciton and trion in MoS2, which are drastically quenched after deposition of Au NPs, indicating electron transfer from photoexcited MoS2 to Au. Ultrafast study reveals that photogenerated free carriers form excitons with a time scale of ∼500 fs and eventually turn into trions within ∼1.2 ps. Dissociation of excitons and trions has been observed in the presence of Au, with time scales of ∼600 fs and ∼3.7 ps, respectively. Understanding the formation and dissociation dynamics of the exciton and trion in monolayer MoS2 is going to help immensely to design and develop many new 2D devices.
Keyphrases