Login / Signup

Male-male social bonds predict tolerance but not coalition formation in wild Japanese macaques.

Tatsuro Kawazoe
Published in: Primates; journal of primatology (2020)
Social bonds have been construed as differentiated and enduring affiliative relationships. Strong bonds will improve fitness through interchanging with coalition formation or tolerance over resources. Social bonds have been found in a variety of taxa and predict the formation of coalitions even amongst males. However, in species exhibiting steeply linear dominance hierarchies, coalitions are hypothesized to be suppressed due to severe competition amongst males, and thus strong bonds may manifest in other forms of behavior, notably social tolerance. The aim of this study was to examine the effects of male-male social bonds and dominance on agonistic supports and aggressive interaction in one of the most despotic primate species, Japanese macaques. I conducted focal samples on male individuals, recording their grooming, proximity to other members, agonistic supports and membership, and aggressive interactions over a 2-year observation period. Male macaques formed differentiated affiliative relationships across dyads and those relationships showed positive relations between the non-mating and the mating seasons. Steep dominance hierarchies were found amongst males. The occurrence of agonistic supports was not explained by the strength of social bonds but by the dominance of the participants, whereas strong bonds predicted less frequent aggressive interaction. These results are in line with the hypothesis that dominance is a major mechanism underlying coalition formation amongst males. Unlike more egalitarian species, strong bonds do not predict coalition formation but rather tolerance in despotic species. These results suggest male-male social bonds will bring alternative consequences according to dominance structures.
Keyphrases
  • mass spectrometry
  • healthcare
  • mental health
  • physical activity
  • risk assessment
  • transition metal