Knockdown of Bcl-xL enhances growth-inhibiting and apoptosis-inducing effects of resveratrol and clofarabine in malignant mesothelioma H-2452 cells.
Yoon-Jin LeeIn-Sung HwangYoon Jin LeeChang Ho LeeSung-Ho KimHae-Saeon NamYoung Ahn YoonSang-Han LeePublished in: Journal of Korean medical science (2014)
Mcl-1 and Bcl-xL, key anti-apoptotic proteins of the Bcl-2 family, have attracted attention as important molecules in the cell survival and drug resistance. In this study, we investigated whether inhibition of Bcl-xL influences cell growth and apoptosis against simultaneous treatment of resveratrol and clofarabine in the human malignant mesothelioma H-2452 cells. Resveratrol and clofarabine decreased Mcl-1 protein levels but had little effect on Bcl-xL levels. In the presence of two compounds, any detectable change in the Mcl-1 mRNA levels was not observed in RT-PCR analysis, whereas pretreatment with the proteasome inhibitor MG132 led to its accumulation to levels far above basal levels. The knockdown of Bcl-xL inhibited cell proliferation with cell accumulation at G2/M phase and the appearance of sub-G0/G1 peak in DNA flow cytometric assay. The suppression of cell growth was accompanied by an increase in the caspase-3/7 activity with the resultant cleavages of procaspase-3 and its substrate poly (ADP-ribose) polymerase, and increased percentage of apoptotic propensities in annexin V binding assay. Collectively, our data represent that the efficacy of resveratrol and clofarabine for apoptosis induction was substantially enhanced by Bcl-xL-lowering strategy in which the simultaneous targeting of Mcl-1 and Bcl-xL could be a more effective strategy for treating malignant mesothelioma.
Keyphrases
- cell cycle arrest
- cell death
- induced apoptosis
- endoplasmic reticulum stress
- oxidative stress
- cell proliferation
- pi k akt
- endothelial cells
- signaling pathway
- stem cells
- high throughput
- anti inflammatory
- cell therapy
- single molecule
- small molecule
- big data
- atomic force microscopy
- cancer therapy
- cell free
- artificial intelligence
- bone marrow
- mesenchymal stem cells
- protein protein