CD30 stimulation induces multinucleation and chromosomal instability in HTLV-1-infected cell lines.
Mariko WatanabeHiromi HatsuseKazuaki NagaoYuetsu TanakaToshiki WatanabeRyouichi HoriePublished in: International journal of hematology (2023)
A recent report indicated involvement of CD30 in progression of human leukemia virus type 1 (HTLV-1) infection, but the exact roles of CD30 in this process remain unclear. This study was conducted to determine the role of CD30 by stimulating CD30 expressed on HTLV-1-infected cell lines with CD30 ligand and observing its effects. CD30 stimulation increased multinucleated cells and inhibited proliferation of HTLV-1-infected cells. This inhibition was recovered by interruption of CD30 stimulation. Chromatin bridges found in multinucleated cells suggested DNA damage. CD30 stimulation triggered DNA double-strand breaks (DSBs) and chromosomal imbalances. CD30 stimulation induced reactive oxygen species (ROS), which induced DSBs. Generation of ROS and multinucleated cells by CD30 was dependent on phosphoinositide 3-kinase. RNA sequencing showed that CD30 stimulation produced significant changes in gene expression profiles, including upregulation of programmed death ligand 1 (PD-L1). Tax, which has also been shown to induce multinucleation and chromosomal instability, failed to induce CD30. These results suggest that induction of CD30, independent of Tax, triggers morphological abnormalities, chromosomal instability, and alteration of gene expression in HTLV-1-infected cells.