DNAzyme-powered DNA walking machine for ultrasensitive fluorescence aptasensing of kanamycin.
Zongqi YangMei LiuBaoxin LiPublished in: Mikrochimica acta (2020)
A DNAzyme-powered DNA walking machine was constructed to develop the fluorescence aptasensing for sensitive detection of kanamycin. The aptamer for kanamycin is partially hybridized with complementary DNA (cDNA) modified on magnetic beads (MBs). The specific interaction of target and aptamer triggered the cDNA to be free tentatively, which captured walker DNA. Then the autonomous motion of DNA walker on MBs surface was propelled via DNAzyme digestion of recognition sites. The signal probe was separated, and the amplified fluorescence signal was achieved by the accumulation of the signal probe. Kanamycin was used as a model analyte, and the developed assay achieves a detection limit of 0.00039 ng·mL-1 (S/N = 3) within a linear detection range from 0.001 to 2000 ng·mL-1. This aptasensing strategy can be extended for detection of other antibiotics by adapting corresponding target recognition aptamer sequence. Graphical abstract The fluorescence aptasensing for sensitive detection of kanamycin based on DNAzyme-powered DNA walking machine was constructed.