Synergistic Effects of Silicon/Zinc Doped Brushite and Silk Scaffolding in Augmenting the Osteogenic and Angiogenic Potential of Composite Biomimetic Bone Grafts.
Joseph Christakiran MosesMainak DeyK Bavya DeviMangal RoySamit Kumar NandiBiman B MandalPublished in: ACS biomaterials science & engineering (2019)
Cell instructive scaffolding platforms displaying synergistic effects by virtue of their chemical and physical cues have tremendous scope in modulating cell phenotype and thus improving the success of any graft. In this regard, we report here the development of Si- and Zn-doped brushite cement composited with silk scaffolding that hierarchically emulated the cancellous bone. The composite scaffolds fabricated exhibited an open porous network capable of enhanced osteoblast survival as attested by increased alkaline phosphatase activity and also sustaining osteoclast activity affirmed by tartrate resistant acid phosphatase staining. Moreover, the chemical cues presented by dissolutions products from the composite scaffold enabled the osteoblasts to secrete proangiogenic factors which favored better endothelial cell survival, confirmed through in vitro experiments. Moreover, the efficacy of these composite biomimetic scaffolds was validated in vivo in volumetric femur defects in rabbits, which revealed that these matrices influenced vascular cell infiltration and favored the formation of matured bony plate. Fluorochrome labeling studies and microtomography analysis revealed that at the end of three months, the implanted composite scaffolds had completely resorbed, leaving behind neo-osseous tissue and vouching for clinical translation of these composite matrices as viable and affordable bone-graft substitutes.