Login / Signup

Toward Asymmetric Synthesis of Pentaorganosilicates.

Leon J P van der BoonShin-Ichi Fuku-EnJ Chris SlootwegKoop LammertsmaAndreas W Ehlers
Published in: Topics in catalysis (2018)
Introducing chiral silicon centers was explored for the asymmetric Rh-catalyzed cyclization of dihydrosilanes to enantiomerically enriched spirosilanes as targets to enable access to enantiostable pentacoordinate silicates. The steric rigidity required in such systems demands the presence of two naphthyl or benzo[b]thiophene groups. The synthetic approach to the expanded spirosilanes extends Takai's method (Kuninobu et al. in Angew Chem Int Ed 52(5):1520-1522, 2013) for the synthesis of spirosilabifluorenes in which both a Si-H and a C-H bond of a dihydrosilane are activated by a rhodium catalyst. The expanded dihydrosilanes were obtained from halogenated aromatic precursors. Their asymmetric cyclization to the spirosilanes were conducted with [Rh(cod)Cl]2 in the presence of the chiral bidentate phosphane ligands (R)-BINAP, (R)-MeO-BIPHEP, and (R)-SEGPHOS, including derivatives with P-(3,5-t-Bu-4-MeO)-phenyl (DTBM) groups. The highest enantiomeric excess of 84% was obtained for 11,11'-spirobi[benzo[b]-naphtho[2,1-d]silole] with the DTBM-SEGPHOS ligand.
Keyphrases
  • room temperature
  • ionic liquid
  • capillary electrophoresis
  • solid state
  • emergency department
  • mass spectrometry
  • carbon dioxide
  • gold nanoparticles
  • metal organic framework
  • electron transfer