Login / Signup

GSPE attenuates CSE-induced lung inflammation and emphysema by regulating autophagy via the reactive oxygen species/TFEB signaling pathway.

Ok Joo SulHye Won ChoiJimi OhSeung Won Ra
Published in: Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association (2023)
Cigarette smoke can enhance reactive oxygen species (ROS) production in inflammatory and epithelial cells. Subsequently, ROS enhance autophagy-induced inflammation due to alveolar macrophages (AMs), the primary source of cytokines implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. Therefore, we hypothesized that grape seed proanthocyanidin extract (GSPE), an effective antioxidant, could inhibit emphysema and airway inflammation by ameliorating cigarette smoke extract (CSE)-induced autophagy via suppressing oxidative stress in macrophages. We observed that GSPE significantly attenuated histological changes observed in CSE-induced emphysema and airway inflammation in the lungs of mice. Moreover, GSPE ameliorated lung inflammation by reducing the number of cells, macrophages, and neutrophils and the tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels measured in bronchioloalveolar lavage fluid. ROS levels increased after CSE instillation and significantly decreased with in vitro GSPE treatment. GSPE decreased transcription factor EB (TFEB) oxidation by reducing ROS, inhibiting TFEB nuclear translocation. Furthermore, GSPE inhibited ROS-induced autophagy in RAW 264.7 cells, bone marrow-derived macrophages, and AMs. Inhibiting autophagy through GSPE treatment diminishes CSE-induced lung inflammation by inhibiting the NLRP3 inflammasome. This study demonstrates that GSPE can ameliorate CSE-induced inflammation and emphysema via autophagy-induced NLRP3 inflammasome regulation through the ROS/TFEB signaling pathway in a COPD mouse model.
Keyphrases