Preparation and Characterization of Pendimethalin Microcapsules Based on Microfluidic Technology.
Yu QinXinyu LuHan QueDandan WangTao HeDingxiang LiangXu LiuJiajia ChenChenrong DingPengcheng XiuChaozhong XuXiaoli GuPublished in: ACS omega (2021)
Microencapsulation of pesticides is a promising attempt to reduce environmental pollution and prevent the active ingredients from the interference of external factors. In this paper, pendimethalin microcapsules were prepared by the interfacial polymerization of 4,4-methylenediphenyl diisocyanate (MDI) and ethylenediamine (EDA) based on microfluidic technology. Effects of the microchannel structure, reaction temperature, surfactant type, and fluid flow rates were investigated and evaluated. The results showed that pendimethalin microcapsules prepared under suitable conditions had a smooth surface, good monodispersity, a high encapsulation efficiency (96.7%), and excellent thermal stability. The size and morphology control of microcapsules were realized by adjusting the flow rates of the continuous phase and the hydrophilic monomer EDA aqueous solution. The release of pendimethalin had a sustained release characteristic that was closely related to the morphology of microcapsules. Compared with the pendimethalin emulsifiable concentrate, pendimethalin microcapsules exhibited outstanding herbicidal activity in the weed control experiments. Therefore, pendimethalin microcapsules with tunable properties were successfully obtained from the microfluidic device and showed great potential in agricultural applications.