Knee Joint Contact Forces during High-Risk Dynamic Tasks: 90° Change of Direction and Deceleration Movements.
Giorgio CassiolasStefano Di PaoloGregorio MarchioriAlberto GrassiFrancesco Della VillaLaura BragonzoniAndrea VisaniGianluca GiavaresiMilena FiniStefano ZaffagniniNicola Francesco LopomoPublished in: Bioengineering (Basel, Switzerland) (2023)
Pivoting sports expose athletes to a high risk of knee injuries, mainly due to mechanical overloading of the joint which shatters overall tissue integrity. The present study explored the magnitude of tibiofemoral contact forces (TFCF) in high-risk dynamic tasks. A novel musculoskeletal model with modifiable frontal plane knee alignment was developed to estimate the total, medial, and lateral TFCF developed during vigorous activities. Thirty-one competitive soccer players performing deceleration and 90° sidestepping tasks were assessed via 3D motion analysis by using a marker-based optoelectronic system and TFCF were assessed via OpenSim software. Statistical parametric mapping was used to investigate the effect of frontal plane alignment, compartment laterality, and varus-valgus genu on TFCF. Further, in consideration of specific risk factors, sex influence was also assessed. A strong correlation (R = 0.71 ÷ 0.98, p < 0.001) was found between modification of compartmental forces and changes in frontal plane alignment. Medial and lateral TFCF were similar throughout most of the tasks with the exception of the initial phase, where the lateral compartment had to withstand to higher loadings (1.5 ÷ 3 BW higher, p = 0.010). Significant sex differences emerged in the late phase of the deceleration task. A comprehensive view of factors influencing the mediolateral distribution of TFCF would benefit knee injury prevention and rehabilitation in sport activities.