Login / Signup

WA-CMS-based iso-cytoplasmic restorers derived from commercial rice hybrids reveal distinct population structure and genetic divergence towards restorer diversification.

Amit KumarVikram Jeet SinghS Gopala KrishnanK K VinodProlay Kumar BhowmickM NagarajanRanjith Kumar EllurHaritha BollinediAshok Kumar Singh
Published in: 3 Biotech (2019)
One hundred diverse iso-cytoplasmic restorer (ICR) lines carrying WA cytoplasm indicated significant but moderate variability for agro-morphological traits as well as for the microsatellite-based allele patterns. There were two major groups of ICRs based on agro-morphological clustering. Simple sequence repeat (SSR) markers identified allelic variants with an average of 2.48 alleles per locus and the gene diversity (GD) ranged from 0.02 to 0.62 at different loci. ICR lines showed a genetic structure involving two sub-populations, POP1 and POP2. Both the subpopulations had the presence of admixture lines. Nearest ancestry-based grouping of ICRs by neighbour-joining (NJ) method showed near similar grouping as that of sub-population division. The POP2 was the largest group but with fewer admixed lines. POP1 was more distinct than POP2. Since the hybrid parents of the ICRs had limited diversity on maternal lineage, paternal lineage was concluded as the major contributor to the observed divergence and population differentiation. ICRs developed from certain hybrids were more genetically distinct than other hybrids. Even with the moderate variability, ICRs could be considered as a potential source of fertility restoration in hybrid development because of their distinct population structure and the full complement of restorer genes they contained. ICR lines with high per se performance can be utilized in hybrid rice development by estimating their combining ability.
Keyphrases