Login / Signup

Construction of Bio-Piezoelectric Platforms: From Structures and Synthesis to Applications.

Qianqian XuXinyu GaoSenfeng ZhaoYou-Nian LiuDou ZhangKechao ZhouHamideh KhanbarehWansong ChenYan ZhangChristopher R Bowen
Published in: Advanced materials (Deerfield Beach, Fla.) (2021)
Piezoelectric materials, with their unique ability for mechanical-electrical energy conversion, have been widely applied in important fields such as sensing, energy harvesting, wastewater treatment, and catalysis. In recent years, advances in material synthesis and engineering have provided new opportunities for the development of bio-piezoelectric materials with excellent biocompatibility and piezoelectric performance. Bio-piezoelectric materials have attracted interdisciplinary research interest due to recent insights on the impact of piezoelectricity on biological systems and their versatile biomedical applications. This review therefore introduces the development of bio-piezoelectric platforms from a broad perspective and highlights their design and engineering strategies. State-of-the-art biomedical applications in both biosensing and disease treatment will be systematically outlined. The relationships between the properties, structure, and biomedical performance of the bio-piezoelectric materials are examined to provide a deep understanding of the working mechanisms in a physiological environment. Finally, the development trends and challenges are discussed, with the aim to provide new insights for the design and construction of future bio-piezoelectric materials.
Keyphrases
  • wastewater treatment
  • antibiotic resistance genes
  • combination therapy
  • microbial community