Login / Signup

Electrical conductivity in a non-covalent two-dimensional porous organic material with high crystallinity.

Qizhi XuBoyuan ZhangYihang ZengAmirali ZangiabadiHongwei NiRongsheng ChenFay NgMichael L SteigerwaldColin P Nuckolls
Published in: Chemical science (2021)
Electroactive macrocycle building blocks are a promising route to new types of functional two-dimensional porous organic frameworks. Our strategy uses conjugated macrocycles that organize into two dimensional porous sheets via non-covalent van der Waals interactions, to make ultrathin films that are just one molecule thick. In bulk, these two-dimensional (2D) sheets stack into a three-dimensional van der Waals crystal, where relatively weak alkyl-alkyl interactions constitute the interface between these sheets. With the liquid-phase exfoliation, we are able to obtain films as thin as two molecular layers. Further using a combination of liquid-phase and mechanical exfoliation, we are able to create non-covalent sheets over a large area (>100 μm2). The ultrathin porous films maintain the single crystal packing from the macrocyclic structure and are electrically conductive. We demonstrate that this new type of 2D non-covalent porous organic framework can be used as the active layer in a field effect transistor device with graphene source and drain contacts along with hexagonal boron nitride as the gate dielectric interface.
Keyphrases
  • metal organic framework
  • ionic liquid
  • room temperature
  • tissue engineering
  • highly efficient
  • water soluble
  • carbon nanotubes
  • photodynamic therapy
  • gold nanoparticles
  • quantum dots
  • reduced graphene oxide