Porous Silicon Oxycarbonitride Ceramics with Palladium and Pd 2 Si Nanoparticles for Dry Reforming of Methane.
Jun WangMatthias GrünbacherSimon PennerMaged F BekheetAleksander GurloPublished in: Polymers (2022)
Pd-containing precursor has been synthesized from palladium acetate and poly(vinly)silazane (Durazane 1800) in an ice bath under an argon atmosphere. The results of ATR-FTIR and NMR characterizations reveal the chemical reaction between palladium acetate and vinyl groups in poly(vinyl)silazane and the hydrolyzation reaction between -Si-H and -Si-CH=CH 2 groups in poly(vinyl)silazane. The palladium nanoparticles are in situ formed in the synthesized precursors as confirmed by XRD, XPS, and TEM. Pd- and Pd 2 Si-containing SiOCN ceramic nanocomposites are obtained by pyrolysis of the synthesized precursors at 700 °C, 900 °C-1100 °C in an argon atmosphere. The pyrolyzed nanocomposites display good catalytic activity towards the dry reforming of methane. The sample pyrolyzed at 700 °C possesses the best catalytic performance, which can be attributed to the in situ formed palladium nanoparticles and high BET surface area of about 233 m 2 g -1 .