Login / Signup

Ligand- and Metal-Based Reactivity of a Neutral Ruthenium Diolefin Diazadiene Complex: The Innocent, the Guilty and the Suspicious.

Vivek SinhaBruno PribanicBas de BruinMonica TrincadoHansjörg Grützmacher
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2018)
Coordination of the diazadiene diolefin ligand (trop2 dad) to ruthenium leads to various complexes of composition [Ru(trop2 dad)(L)]. DFT studies indicate that the closed-shell singlet (CSS), open-shell singlet (OSS), and triplet electronic structures of this species are close in energy, with the OSS spin configuration being the lowest in energy for all tested functionals. Singlet-state CASSCF calculations revealed a significant multireference character for these complexes. The closed-shell singlet wavefunction dominates, but these complexes have a significant (≈8-16 %) open-shell singlet [d7 -RuI (L)(trop2 dad.- )] contribution mixed into the ground state. In agreement with their ambivalent electronic structure, these complexes reveal both metal- and ligand-centered reactivity. Most notable are the reactions with AdN3 , diazomethane, and a phosphaalkyne leading to scission of the C-C bond of the diazadiene (dad) moiety of the trop2 dad ligand, resulting in net (formal) nitrene, carbene, or P≡C insertion in the dad C-C bond, respectively. Supporting DFT studies revealed that several of the ligand-based reactions proceed via low-barrier radical-type pathways, involving the dad.- ligand radical character of the OSS or triplet species.
Keyphrases