Login / Signup

Intelligent Chip-Controlled Smart Oxygen Electrodes for Constructing Rechargeable Zinc-Air Batteries with Excellent Energy Efficiency and Durability.

Lulu ChaiJinlu SongYan Zhi SunXiaoguang LiuXi-Fei LiMaohong FanJunqing PanXueliang Sun
Published in: ACS applied materials & interfaces (2023)
High-performance rechargeable oxygen electrodes are key devices for realizing high-specific-energy batteries, including zinc-air and lithium-air batteries. However, these batteries have severe problems of premature decay in energy efficiency by serious corrosion, wide charge-discharge gap, and catalyst peeling off. Herein, we propose a "smart dual-oxygen electrode", which is composed of an intelligent switch control module + heterostructured Fe 1 Ni 3 -LDH/PNCNF OER catalysis electrode layer + ion conductive | electronic insulating membrane + Pt/C ORR catalysis electrode layer, where OER and ORR layers are automatically switched by the intelligent switch control module as required. This smart dual-oxygen electrode offers an ultralow energy efficiency decay rate of 0.0067% after 300 cycles during cycling, much lower than that of the commercial Pt/C electrode (1.82%). The assembled rechargeable zinc-air battery (RZAB) displays a super narrow voltage gap and achieves a high energy efficiency of 71.7%, far higher than that of the existing RZABs (about 50%). Therefore, this strategy provides a complete solution for designing various high-performance metal-air secondary batteries.
Keyphrases
  • solid state
  • mental health
  • oxide nanoparticles
  • reduced graphene oxide
  • circulating tumor cells
  • highly efficient