Inhibiting Radiative Transition-Mediated Multifunctional Polymeric Nanoplatforms for Highly Efficient Tumor Phototherapeutics.
Yucheng ZhuChao ChenGuoliang YangQinghua WuJia TianErhong HaoHongliang CaoYun GaoHongman ZhangPublished in: ACS applied materials & interfaces (2020)
It is highly desired to explore ideal phototherapeutic nanoplatforms, especially containing satisfactory phototherapeutic agents (PTAs), for potential cancer therapies. Herein, we proposed an effective strategy for designing a highly efficient PTA through inhibiting radiative transition (IRT). Specifically, we developed an ultralow radiative BODIPY derivative (TPA-IBDP) by simply conjugating two triphenylamine units to iodine-substituted BODIPY, which could simultaneously facilitate the nonradiative decay channels of singlet-to-triplet intersystem crossing and intramolecular charge transfer. In comparison to the normal BODIPY compound, TPA-IBDP exhibited an outstanding singlet oxygen yield (31.8-fold) and a higher photothermal conversion efficiency (PCE; over 3-fold), respectively, benefiting from the extended π-conjugated donor-to-accepter (D-A) structure and the heavy atom effect. For tumor phototherapy using TPA-IBDP, TPA-IBDP was conjugated with a H2O2-responsive amphiphilic copolymer POEGMA10-b-[PBMA5-co-(PS-N3)2] to construct a multifunctional phototherapeutic BODIPY-based nanoplatform (PB). PB produced abundant singlet oxygen (1O2) and heat along with negligible fluorescence emission under near-infrared laser irradiation. Additionally, PB could generate a GSH-depletion scavenger (quinone methide, QM) after reacting with the abundant intracellular H2O2 in tumor for the cooperative enhancement of IRT-mediated phototherapy. We envision that this highly efficient multifunctional phototherapeutic nanoplatform cooperated by GSH-depletion could be a valuable paradigm for tumor treatments.