Login / Signup

Nitinol: From historical milestones to functional properties and biomedical applications.

Saeid AlipourFarzaneh TaromianErfan Rezvani GhomiMina ZareSunpreet SinghSeeram Ramakrishna
Published in: Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine (2022)
Isoatomic NiTi alloy (Nitinol) has become an important biomaterial due to its unique characteristics, including shape memory effect, superelasticity, and high damping. Nitinol has been widely used in the biomedical field, including orthopedics, vascular stents, orthodontics, and other medical devices. However, there have been convicting views about the biocompatibility of Nitinol. Some studies have shown that Nitinol has extremely low cytotoxicity, indicating Nitinol has good biocompatibility. However, some studies have shown that the in-vivo corrosion resistance of Nitinol significantly decreases. This comprehensive paper discusses the historical developments of Nitinol, its biomedical applications, and its specific functional property. These render the suitability of Nitinol for such biomedical applications and provide insights into its in vivo and in vitro biocompatibility in the physiological environment and the antimicrobial strategies that can be applied to enhance its biocompatibility. Although 3D metal printing is still immature and Nitinol medical materials are difficult to be processed, Nitinol biomaterials have excellent potential and commercial value for 3D printing. However, there are still significant problems in the processing of Nitinol and improving its biocompatibility. With the deepening of research and continuous progress in surface modification and coating technology, a series of medical devices made from Nitinol are expected to be released soon.
Keyphrases
  • healthcare
  • tissue engineering
  • case control