Login / Signup

Single Wavelength Operating Neuromorphic Device Based on a Graphene-Ferroelectric Transistor.

Krishna MaityJean-François DayenBernard DoudinRoman GumeniukBohdan Kundys
Published in: ACS applied materials & interfaces (2023)
As global data generation continues to rise, there is an increasing demand for revolutionary in-memory computing methodologies and efficient machine learning solutions. Despite recent progress in electrical and electro-optical simulations of machine learning devices, the all-optical nonthermal function remains challenging, with single wavelength operation still elusive. Here we report on an optical and monochromatic way of neuromorphic signal processing for brain-inspired functions, eliminating the need for electrical pulses. Multilevel synaptic potentiation-depression cycles are successfully achieved optically by leveraging photovoltaic charge generation and polarization within the photoferroelectric substrate interfaced with the graphene sensor. Furthermore, the demonstrated low-power prototype device is able to reproduce exact signal profile of brain tissues yet with more than 2 orders of magnitude faster response. The reported properties should trigger all-optical and low power artificial neuromorphic development based on photoferroelectric structures.
Keyphrases