Login / Signup

Transcapillary PO2 gradients in contracting muscles across the fibre type and oxidative continuum.

Trenton D ColburnDaniel M HiraiJesse C CraigScott K FergusonRamona E WeberKiana M SchulzeBrad J BehnkeTimothy I MuschDavid C Poole
Published in: The Journal of physiology (2020)
In mixed fibre-type skeletal muscle transcapillary PO2 gradients (PO2 mv-PO2 is; microvascular and interstitial, respectively) drive O2 flux across the blood-myocyte interface where the greatest resistance to that O2 flux resides. We assessed a broad spectrum of fibre-type and oxidative-capacity rat muscles across the rest-to-contraction (1 Hz, 120 s) transient to test the novel hypotheses that: (i) slow-twitch PO2 is would be greater than fast-twitch, (ii) muscles with greater oxidative capacity have greater PO2 is than glycolytic counterparts, and (iii) whether PO2 mv-PO2 is at rest is maintained during contractions across all muscle types. PO2 mv and PO2 is were determined via phosphorescence quenching in soleus (SOL; 91% type I+IIa fibres and CSa: ∼21 μmol min-1 g-1 ), peroneal (PER; 33% and ∼20 μmol min-1 g-1 ), mixed (MG; 9% and ∼26 μmol min-1 g-1 ) and white gastrocnemius (WG; 0% and ∼8 μmol min-1 g-1 ) across the rest-contraction transient. PO2 mv was higher than PO2 is in each muscle (∼6-13 mmHg; P < 0.05). SOL PO2 isarea was greater than in the fast-twitch muscles during contractions (P < 0.05). Oxidative muscles had greater PO2 isnadir (9.4 ± 0.8, 7.4 ± 0.9 and 6.4 ± 0.4; SOL, PER and MG, respectively) than WG (3.0 ± 0.3 mmHg, P < 0.05). The magnitude of PO2 mv-PO2 is at rest decreased during contractions in MG only (∼11 to 7 mmHg; time × (PO2 mv-PO2 is) interaction, P < 0.05). These data support the hypothesis that, since transcapillary PO2 gradients during contractions are maintained in all muscle types, increased O2 flux must occur via enhanced intracapillary diffusing conductance, which is most extreme in highly oxidative fast-twitch muscle.
Keyphrases
  • visible light
  • skeletal muscle
  • machine learning
  • oxidative stress
  • adipose tissue
  • climate change
  • subarachnoid hemorrhage
  • artificial intelligence
  • quantum dots
  • smooth muscle
  • ionic liquid
  • deep learning