Login / Signup

Conservation of ultrafast photoprotective mechanisms with increasing molecular complexity in sinapoyl malate derivatives.

Lewis A BakerMichael StaniforthAmandine L FlouratFlorent AllaisVasilios G Stavros
Published in: Chemphyschem : a European journal of chemical physics and physical chemistry (2020)
Sinapoyl malate is a natural plant sunscreen molecule which protects leaves from harmful ultraviolet radiation. Here, the ultrafast dynamics of three sinapoyl malate derivatives, sinapoyl L-dimethyl malate, sinapoyl L-diethyl malate and sinapoyl L-di-t-butyl malate, have been studied using transient electronic absorption spectroscopy, in a dioxane and methanol solvent environment to investigate how well preserved these dynamics remain with increasing molecular complexity. In all cases it was found that, upon photoexcitation, deactivation occurs via a trans-cis isomerisation pathway within ∼20-30 ps. This cis-photoproduct, formed during photodeactivation, is stable and longed-lived for all molecules in both solvents. The incredible levels of conservation of the isomerisation pathway with increased molecular complexity demonstrate the efficacy of these molecules as ultraviolet photoprotectors, even in strongly perturbing solvents. As such, we suggest these molecules might be well-suited for augmentations to further improve their photoprotective efficacy or chemical compatibility with other components of sunscreen mixtures, whilst conserving their underlying photodynamic properties.
Keyphrases
  • ionic liquid
  • single molecule
  • squamous cell carcinoma
  • radiation therapy
  • cancer therapy
  • escherichia coli
  • lymph node
  • brain injury
  • cystic fibrosis
  • energy transfer
  • blood brain barrier
  • solid state
  • light emitting