Login / Signup

Fast regular firings induced by intra- and inter-time delays in two clustered neuronal networks.

Xiaojuan SunMatjaz PercJuergen KurthsQishao Lu
Published in: Chaos (Woodbury, N.Y.) (2019)
In this paper, we consider two clustered neuronal networks with dense intra-synaptic links within each cluster and sparse inter-synaptic links between them. We focus on the effects of intra- and inter-time delays on the spiking regularity and timing in both clusters. With the aid of simulation results, we show that intermediate intra- and inter-time delays are able to separately induce fast regular firing - spiking activity with a high firing rate as well as a high spiking regularity. Moreover, when both intra- and inter-time delays are present, we find that fast regular firings are induced much more frequently than if only a single type of delay is present in the system. Our results indicate that appropriately adjusted intra- and inter-time delays can significantly facilitate fast regular firing in neuronal networks. Based on a detailed analysis, we conjecture that this is most likely when the largest value of common divisors of the intra- and inter-time delays falls into a range where fast regular firings are induced by suitable intra- or inter-time delays alone.
Keyphrases
  • cerebral ischemia
  • brain injury
  • subarachnoid hemorrhage
  • neural network