Photopharmacological Control of Cyclic Antimicrobial Peptides.
Yuan Qi YeohJingxian YuSteven W PolyakJohn R HorsleyAndrew D AbellPublished in: Chembiochem : a European journal of chemical biology (2018)
Gramicidin S is a naturally occurring antimicrobial cyclic peptide. Herein, we present a series of cyclic peptides based on gramicidin S that contain an azobenzene photoswitch to reversibly control secondary structure and, hence, antimicrobial activity. 1 H NMR spectroscopy and density functional theory calculations revealed a β-sheet/β-turn secondary structure for the cis configuration of each peptide, and an ill-defined conformation for all associated trans structures. The cis-enriched and trans-enriched photostationary states (PSSs) for peptides 1-3 were assayed against Staphylococcus aureus to reveal a clear relationship between well-defined secondary structure, amphiphilicity and optimal antimicrobial activity. Most notably, peptides 2 a and 2 b exhibited a fourfold difference in antimicrobial activity in the cis-enriched PSS over the trans-enriched equivalent. This photopharmacological approach allows antimicrobial activity to be regulated through photochemical control of the azobenzene photoswitch, thereby opening new avenues in the design and synthesis of future antibiotics.