Login / Signup

Responses of Aspen Leaves to Heatflecks: Both Damaging and Non-Damaging Rapid Temperature Excursions Reduce Photosynthesis.

Katja HüveIrina BicheleHedi KaldmäeBahtijor RasulovFernando ValladaresÜlo Niinemets
Published in: Plants (Basel, Switzerland) (2019)
During exposure to direct sunlight, leaf temperature increases rapidly and can reach values well above air temperature in temperate forest understories, especially when transpiration is limited due to drought stress, but the physiological effects of such high-temperature events are imperfectly understood. To gain insight into leaf temperature changes in the field and the effects of temperature variation on plant photosynthetic processes, we studied leaf temperature dynamics under field conditions in European aspen (Populus tremula L.) and under nursery conditions in hybrid aspen (P. tremula × P. tremuloides Michaux), and further investigated the heat response of photosynthetic activity in hybrid aspen leaves under laboratory conditions. To simulate the complex fluctuating temperature environment in the field, intact, attached leaves were subjected to short temperature increases ("heat pulses") of varying duration over the temperature range of 30 °C-53 °C either under constant light intensity or by simultaneously raising the light intensity from 600 μmol m-2 s-1 to 1000 μmol m-2 s-1 during the heat pulse. On a warm summer day, leaf temperatures of up to 44 °C were measured in aspen leaves growing in the hemiboreal climate of Estonia. Laboratory experiments demonstrated that a moderate heat pulse of 2 min and up to 44 °C resulted in a reversible decrease of photosynthesis. The decrease in photosynthesis resulted from a combination of suppression of photosynthesis directly caused by the heat pulse and a further decrease, for a time period of 10-40 min after the heat pulse, caused by subsequent transient stomatal closure and delayed recovery of photosystem II (PSII) quantum yield. Longer and hotter heat pulses resulted in sustained inhibition of photosynthesis, primarily due to reduced PSII activity. However, cellular damage as indicated by increased membrane conductivity was not found below 50 °C. These data demonstrate that aspen is remarkably resistant to short-term heat pulses that are frequent under strongly fluctuating light regimes. Although the heat pulses did not result in cellular damage, heatflecks can significantly reduce the whole plant carbon gain in the field due to the delayed photosynthetic recovery after the heat pulse.
Keyphrases
  • heat stress
  • blood pressure
  • oxidative stress
  • climate change
  • high intensity
  • artificial intelligence
  • high speed
  • atomic force microscopy