Login / Signup

Cosmetically Approved Short-Chain Alcohol/Triethyl Citrate/Water Surfactant-Free Microemulsions and Potential Application to Transdermal Penetration of α-Arbutin.

Zhiqin ZhangQingle SongZhen ZhaoKuan ChangPeng ShuJing WangHui YanYongmin Zhang
Published in: Langmuir : the ACS journal of surfaces and colloids (2024)
Surfactant-free microemulsions (SFMEs) exhibited remarkable advantages and potential, attributed to their similarity to traditional surfactant-based microemulsions and the absence of surfactants. Herein, a novel SFME was developed utilizing cosmetically approved materials, such as short-chain alcohol as an amphi-solvent, triethyl citrate (TEC) as the nonpolar phase, and water as the polar phase. 1,2-Pentanediol (PtDO)/TEC/water combination can form the largest monophasic zone, accounting for ∼74% of the total phase diagram area, due to an optimal hydrophilic (water)-lipophilic (TEC) balance. Comparable to surfactant-based microemulsion, PtDO/TEC/water SFME can also be categorized into three types: water-in-oil, discontinuous, and oil-in-water. As TEC or water is increased, or PtDO is decreased, the nanoaggregates in PtDO/TEC/water SFME grow from <5 nm to tens of nanometers. The addition of α-arbutin (ABN) does not disrupt PtDO/TEC/water SFME, but rather enhances its formation, resulting in a larger monophasic area and consistent size (2.8-3.8 nm) through participating in interface assembly. Furthermore, ABN-loaded PtDO/TEC/water SFME exhibits remarkable resistance to dilution, exceptional stability, and minimal irritation. Notably, PtDO/TEC/water SFME significantly boosts ABN's solubility in water by 2 times, its percutaneous penetration rate by 3-4 times, and enables a slow-release DPPH • radical scavenging effect. This SFME serves as a safe and cosmetically suitable nanoplatform for the delivery of bioactive substances.
Keyphrases
  • drug delivery
  • risk assessment
  • climate change
  • liquid chromatography tandem mass spectrometry
  • ultrasound guided
  • drug release