Login / Signup

Dual Representation of the Auditory Space.

Stephanie ClarkeSandra Da CostaSonia Crottaz-Herbette
Published in: Brain sciences (2024)
Auditory spatial cues contribute to two distinct functions, of which one leads to explicit localization of sound sources and the other provides a location-linked representation of sound objects. Behavioral and imaging studies demonstrated right-hemispheric dominance for explicit sound localization. An early clinical case study documented the dissociation between the explicit sound localizations, which was heavily impaired, and fully preserved use of spatial cues for sound object segregation. The latter involves location-linked encoding of sound objects. We review here evidence pertaining to brain regions involved in location-linked representation of sound objects. Auditory evoked potential (AEP) and functional magnetic resonance imaging (fMRI) studies investigated this aspect by comparing encoding of individual sound objects, which changed their locations or remained stationary. Systematic search identified 1 AEP and 12 fMRI studies. Together with studies of anatomical correlates of impaired of spatial-cue-based sound object segregation after focal brain lesions, the present evidence indicates that the location-linked representation of sound objects involves strongly the left hemisphere and to a lesser degree the right hemisphere. Location-linked encoding of sound objects is present in several early-stage auditory areas and in the specialized temporal voice area. In these regions, emotional valence benefits from location-linked encoding as well.
Keyphrases