Login / Signup

Hybrid molecular graphene transistor as an operando and optoelectronic platform.

Jorge TrasobaresJuan Carlos Martín-RomanoMuhammad Waqas KhaliqSandra Ruiz-GómezMichael FoersterMiguel Ángel NiñoPatricia PedrazYannick J DappeMarina Calero de OryJulia García-PérezMaría AcebrónManuel Rodríguez OsorioMaría Teresa MagazAlicia GomezRodolfo MirandaDaniel Granados
Published in: Nature communications (2023)
Lack of reproducibility hampers molecular devices integration into large-scale circuits. Thus, incorporating operando characterization can facilitate the understanding of multiple features producing disparities in different devices. In this work, we report the realization of hybrid molecular graphene field effect transistors (m-GFETs) based on 11-(Ferrocenyl)undecanethiol (FcC 11 SH) micro self-assembled monolayers (μSAMs) and high-quality graphene (Gr) in a back-gated configuration. On the one hand, Gr enables redox electron transfer, avoids molecular degradation and permits operando spectroscopy. On the other hand, molecular electrode decoration shifts the Gr Dirac point (V DP ) to neutrality and generates a photocurrent in the Gr electron conduction regime. Benefitting from this heterogeneous response, the m-GFETs can implement optoelectronic AND/OR logic functions. Our approach represents a step forward in the field of molecular scale electronics with implications in sensing and computing based on sustainable chemicals.
Keyphrases
  • single molecule
  • electron transfer
  • healthcare
  • carbon nanotubes
  • single cell