Login / Signup

Changes in pulmonary vein size and narrowing depend on the cardiac cycle before and after pulmonary vein isolation.

Kotaro OuchiToru SakumaShunsuke KisakiKenichi TokutakeTeiichi YamaneHiroya Ojiri
Published in: Heart and vessels (2024)
Accurate measurement of the pulmonary vein dimension (PVD) is important for determining stenosis and efficacy following pulmonary vein isolation (PVI). Little is known about the quantitative evaluation of the impact of the cardiac cycle on pulmonary vein (PV) morphology before and after PVI. This study aims to investigate variations in the ostial size of the PV during the cardiac cycle before and after PVI and the effect of the cardiac cycle on PV stenosis and reduction rate using cardiac computed tomography (CT). Sixty-eight patients with atrial fibrillation who underwent cardiac CT before and after PVI at our institution between 23 January 2021 and 5 February 2022 were retrospectively analyzed. The maximum and minimum PVD were measured at each segment before and after the PV. Each PV was evaluated according to the PVD reduction rate (ΔPVD), calculated as follows: (1 - post-PVD/pre-PVD) × 100 (%). The average dimension of all PVs at the end-diastolic frame was significantly reduced compared to that at the end-systolic frame before PVI. The average dimensions of the right superior and right inferior PV at the end-diastolic frame were significantly reduced compared with those at the end-systolic frame following PVI. The average reduction rate of dimension-classified stenosis of PVs, except for the left inferior PV at the end-diastolic frame, was significantly reduced compared with that at the end-systolic frame. The cardiac cycle affects PVD assessment, including PV stenosis, after PVI. PVD measurement is recommended to be unified to the end-systolic frame of the cardiac cycle to avoid underestimating PV stenosis before and after PVI, ensuring appropriate management and follow-up.
Keyphrases
  • left ventricular
  • blood pressure
  • computed tomography
  • heart failure
  • mass spectrometry