Login / Signup

Skeletal Muscle-Derived Stem Cell Transplantation Accelerates the Recovery of Peripheral Nerve Gap Injury under 50% and 100% Allogeneic Compatibility with the Swine Leucocyte Antigen.

Tetsuro TamakiToshiharu NatsumeAkira KatohAtsuko ShigenariTakashi ShiinaNobuyuki NakajimaKosuke SaitoTsuyoshi FukuzawaMasayoshi OtakeSatoko EnyaAkihisa KangawaTakeshi ImaiMiyu TamakiYoshiyasu Uchiyama
Published in: Biomolecules (2024)
Pig skeletal muscle-derived stem cells (SK-MSCs) were transplanted onto the common peroneal nerve with a collagen tube as a preclinical large animal experiment designed to address long nerve gaps. In terms of therapeutic usefulness, a human family case was simulated by adjusting the major histocompatibility complex to 50% and 100% correspondences. Swine leukocyte antigen (SLA) class I haplotypes were analyzed and clarified, as well as cell transplantation. Skeletal muscle-derived CD34+/45- (Sk-34) cells were injected into bridged tubes in two groups (50% and 100%) and with non-cell groups. Therapeutic effects were evaluated using sedentary/general behavior-based functional recovery score, muscle atrophy ratio, and immunohistochemistry. The results indicated that a two-Sk-34-cell-transplantation group showed clearly and significantly favorable functional recovery compared to a non-cell bridging-only group. Supporting functional recovery, the morphological reconstitution of the axons, endoneurium, and perineurium was predominantly evident in the transplanted groups. Thus, Sk-34 cell transplantation is effective for the regeneration of peripheral nerve gap injury. Additionally, 50% and 100% SLA correspondences were therapeutically similar and not problematic, and no adverse reaction was found in the 50% group. Therefore, the immunological response to Sk-MSCs is considered relatively low. The possibility of the Sk-MSC transplantation therapy may extend to the family members beyond the autologous transplantation.
Keyphrases