Login / Signup

High-resolution analysis of baculovirus-induced host manipulation in the domestic silkworm, Bombyx mori.

Hiroyuki HikidaSusumu Katsuma
Published in: Parasitology (2020)
Many parasites manipulate host behaviour to enhance their transmission. Baculoviruses induce enhanced locomotory activity (ELA) combined with subsequent climbing behaviour in lepidopteran larvae, which facilitates viral dispersal. However, the mechanisms underlying host manipulation system are largely unknown. Previously, larval locomotion during ELA was summarized as the distance travelled for a few minutes at several time points, which are unlikely to characterize ELA precisely, as ELA typically persists for several hours. In this study, we modified a recently developed method using time-lapse recording to characterize locomotion of Bombyx mori larvae infected with Bombyx mori nucleopolyhedrovirus (BmNPV) for 24 h at 3 s resolution. Our data showed that the locomotion of the mock-infected larvae was restricted to a small area, whereas the BmNPV-infected larvae exhibited a large locomotory area. These results indicate that BmNPV dysregulates the locomotory pattern of host larvae. Furthermore, both the mock- and BmNPV-infected larvae showed periodic cycles of movement and stationary behavior with a similar frequency, suggesting the physiological mechanisms that induce locomotion are unaffected by BmNPV infection. In contrast, the BmNPV-infected larvae exhibited fast and long-lasting locomotion compared with mock-infected larvae, which indicates that locomotory speed and duration are manipulated by BmNPV.
Keyphrases
  • aedes aegypti
  • drosophila melanogaster
  • high resolution
  • zika virus
  • sars cov
  • endothelial cells
  • liquid chromatography
  • contrast enhanced