Login / Signup

Percolation-Triggered Negative Permittivity in Nano Carbon Powder/Polyvinylidene Fluoride Composites.

Guangyue ShiXiaolei SunYao Liu
Published in: Molecules (Basel, Switzerland) (2024)
Percolating composites exhibiting negative permittivity have garnered considerable attention due to their promising applications in the realm of electromagnetic shielding, innovative capacitance devices, coil-less inductors, etc. Nano carbon powder/polyvinylidene fluoride (CP/PVDF) percolating composites were fabricated that exhibit Drude-type negative-permittivity behavior upon reaching the CP percolation threshold. This phenomenon is attributed to the formation of a plasmonic state within the interconnected CP network, enabling the delocalization of electrons under the alternating electric field. Furthermore, a significant (nearly two orders of magnitude) increase in the conductivity of sample is observed at a CP content of 12.5 wt%. This abrupt change coincides with the percolation phenomenon, suggesting a transition in the conduction mechanism. To elucidate this behavior, comprehensive analyses of the phase composition, microstructure, AC conductivity, and relative permittivity were performed. Additionally, the sample containing 5 wt% CP exhibits a remarkably high permittivity of 31.5, accompanied by a relatively low dielectric loss (tanδ < 0.2). The findings expand the potential applications of PVDF, while the fabricated percolating composites hold promise for electromagnetic shielding, antennas, and other electromagnetic devices.
Keyphrases
  • reduced graphene oxide
  • high frequency
  • visible light
  • drinking water
  • aqueous solution
  • white matter
  • gold nanoparticles
  • multiple sclerosis
  • machine learning
  • big data
  • quantum dots
  • human health
  • deep learning