Login / Signup

Artificial Organelles with Orthogonal-Responsive Membranes for Protocell Systems: Probing the Intrinsic and Sequential Docking and Diffusion of Cargo into Two Coexisting Avidin-Polymersomes.

Xueyi WangSilvia MorenoSusanne BoyePeng WangXiaoling LiuAlbena LedererBrigitte VoitDietmar Appelhans
Published in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2021)
The challenge of effective integration and use of artificial organelles with orthogonal-responsive membranes and their communication in eukaryotic protocells is to understand the intrinsic membrane characteristics. Here, a novel photo-crosslinked and pH-responsive polymersome (Psome B) with 2-(N,N'-diisopropylamino)ethyl units in the membrane and its respective Avidin-Psome B hybrids, are reported as good candidates for artificial organelles. Biotinylated (macro)molecules are able to dock and diffuse into Avidin-Psome B to carry out biological activity in a pH- and size-dependent manner. Combined with another polymersome (Psome A) with 2-(N,N'-diethylamino)ethyl units in the membrane, two different pH-responsive polymersomes for mimicking different organelles in one protocell system are reported. The different intrinsic docking and diffusion processes of cargo (macro)molecules through the membranes of coexisting Psome A and B are pH-dependent as confirmed using pH titration-dynamic light scattering (DLS). Psome A and B show separated "open", "closing/opening", and "closed" states at various pH ranges with different membrane permeability. The results pave the way for the construction of multicompartmentalized protocells with controlled communications between different artificial organelles.
Keyphrases
  • molecular dynamics simulations
  • molecular dynamics
  • cancer therapy
  • endothelial cells
  • drug delivery
  • low grade