Login / Signup

Simultaneous improvement in electrical conductivity and Seebeck coefficient of PEDOT:PSS by N 2 pressure-induced nitric acid treatment.

May Thu Zar MyintMasaki HadaHirotaka InoueTatsuki MaruiTakeshi NishikawaYuta NishinaSusumu IchimuraMasayoshi UmenoAung Ko Ko KyawYasuhiko Hayashi
Published in: RSC advances (2018)
As a thermoelectric (TE) material suited to applications for recycling waste-heat into electricity through the Seebeck effect, poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid) (PEDOT:PSS) is of great interest. Our research demonstrates a comprehensive study of different post-treatment methods with nitric acid (HNO 3 ) to enhance the thermoelectric properties of PEDOT:PSS. The optimum conditions are obtained when PEDOT:PSS is treated with HNO 3 for 10 min at room temperature followed by passing nitrogen gas (N 2 ) with a pressure of 0.2 MPa. Upon this treatment, PEDOT:PSS changes from semiconductor-like behaviour to metal-like behaviour, with a simultaneous enhancement in the electrical conductivity and Seebeck coefficient at elevated temperature, resulting in an increase in the thermoelectric power factor from 0.0818 to 94.3 μW m -1 K -2 at 150 °C. The improvement in the TE properties is ascribed to the combined effects of phase segregation and conformational change of the PEDOT due to the weakened coulombic attraction between PEDOT and PSS chains by nitric acid as well as the pressure of the N 2 gas as a mechanical means.
Keyphrases
  • room temperature
  • computed tomography
  • magnetic resonance
  • molecular dynamics
  • endothelial cells
  • combination therapy
  • risk assessment
  • diffusion weighted imaging
  • diabetic rats
  • sewage sludge