Login / Signup

Amplification of Oxidative Stress in MCF-7 Cells by a Novel pH-Responsive Amphiphilic Micellar System Enhances Anticancer Therapy.

Kai DongQiuya LeiHongfei QiYanni ZhangNing CuiXianglong WuLi XieXiaocheng YanTingli Lu
Published in: Molecular pharmaceutics (2019)
The excessive increase of intracellular reactive oxygen species (ROS) makes tumor cells usually in the state of oxidative stress. Although tumor cells can adapt to this state to a certain extent by upregulating antioxidant systems, the further ROS insults disrupt the transient intracellular redox balance, eventually leading to apoptosis and necrosis. Therefore, increasing the intracellular ROS level can effectively amplify the oxidative stress and induce apoptosis, which can be employed as a strategy for tumor treatment. Herein, a unique pH-responsive ROS inducing micellar system was reported in this study to specifically amplify the ROS signal in tumor cells. This micellar system was constructed by a new amphiphilic polymer, PIAThydCA, composed of poly(itaconic acid) (PIA) as the hydrophilic backbone, d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) as the hydrophobic side chain, and cinnamaldehyde (CA) as the ROS-generating agent, which were linked to PIA by the pH-sensitive hydrazone bond. PIAThydCA micelles could be degraded in the intracellular acidic environment through the hydrolysis of hydrazone bond and release CA. CA and TPGS could amplify oxidative stress cooperatively to kill MCF-7 human breast cells preferentially through the mitochondrial apoptosis pathway. Therefore, we anticipate that the PIAThydCA micelles could exert great potential in anticancer therapy.
Keyphrases