Thermal Gradient Approach for the Quasi-harmonic Approximation and Its Application to Improved Treatment of Anisotropic Expansion.
Nathan S AbrahamMichael R ShirtsPublished in: Journal of chemical theory and computation (2018)
We present a novel approach to efficiently implement thermal expansion in the quasi-harmonic approximation (QHA) for both isotropic and more importantly, anisotropic expansion. In this approach, we rapidly determine a crystal's equilibrium volume and shape at a given temperature by integrating along the gradient of expansion from 0 Kelvin up to the desired temperature. We compare our approach to previous isotropic methods that rely on a brute-force grid search to determine the free energy minimum, which is infeasible to carry out for anisotropic expansion, as well as quasi-anisotropic approaches that take into account the contributions to anisotropic expansion from the lattice energy. We compare these methods for experimentally known polymorphs of piracetam and resorcinol and show that both isotropic methods agree to within error up to 300 K. Using the Grüneisen parameter causes up to 0.04 kcal/mol deviation in the Gibbs free energy, but for polymorph free energy differences there is a cancellation in error with all isotropic methods within 0.025 kcal/mol at 300 K. Anisotropic expansion allows the crystals to relax into lattice geometries 0.01-0.23 kcal/mol lower in energy at 300 K relative to isotropic expansion. For polymorph free energy differences all QHA methods produced results within 0.02 kcal/mol of each other for resorcinol and 0.12 kcal/mol for piracetam, the two molecules tested here, demonstrating a cancellation of error for isotropic methods. We also find that with expansion in more than a single volume variable, there is a non-negligible rate of failure of the basic approximations of QHA. Specifically, while expanding into new harmonic modes as the box vectors are increased, the system often falls into alternate, structurally distinct harmonic modes unrelated by continuous deformation from the original harmonic mode.
Keyphrases