Login / Signup

A genetic signature of the evolution of loss of flight in the Galapagos cormorant.

Alejandro BurgaWeiguang WangEyal Ben-DavidPaul C WolfAndrew M RameyClaudio VerdugoKaren M LyonsPatricia G ParkerLeonid Kruglyak
Published in: Science (New York, N.Y.) (2018)
We have a limited understanding of the genetic and molecular basis of evolutionary changes in the size and proportion of limbs. We studied wing and pectoral skeleton reduction leading to flightlessness in the Galapagos cormorant (Phalacrocorax harrisi). We sequenced and de novo assembled the genomes of four cormorant species and applied a predictive and comparative genomics approach to find candidate variants that may have contributed to the evolution of flightlessness. These analyses and cross-species experiments in Caenorhabditis elegans and in chondrogenic cell lines implicated variants in genes necessary for transcriptional regulation and function of the primary cilium. Cilia are essential for Hedgehog signaling, and humans affected by skeletal ciliopathies suffer from premature bone growth arrest, mirroring skeletal features associated with loss of flight.
Keyphrases
  • genome wide
  • copy number
  • dna methylation
  • mesenchymal stem cells
  • bone mineral density
  • single cell
  • genetic diversity
  • gene expression
  • bone marrow
  • cell proliferation
  • body composition
  • soft tissue
  • genome wide analysis