Login / Signup

Photothermal performance of a novel carbon dot and its conjugate with disulfiram for prostate cancer PC3 cell therapy.

Mohamad MahaniLeila MontazerFaeze KhakbazFaten DivsarMehdi Yoosefian
Published in: Nanomedicine (London, England) (2023)
Aim: To develop and employ a copper, sulfur, nitrogen-carbon quantum dot (C,S,N-CQD) multifunctional platform for synergistic cancer therapy, combining chemotherapy and photothermal treatment with in vitro cancer cell imaging. Materials & methods: Cu,S,N-CQDs were synthesized hydrothermally, loaded with disulfiram (DSF), and characterized through UV-Vis spectrophotometry, photoluminescence, Fourier-transform infrared spectroscopy, high-resolution transmission electron microscopy, dynamic light scattering, x-ray diffraction and EDAX. Results: Cu,S,N-CQD exhibited 5.5% absolute fluorescence quantum yield, 46.0% photothermal conversion efficiency and excellent stability. The release of DSF-loaded Cu,S,N-CQD, photothermal performance, and IC 50 on PC3 prostate cancer cells, were evaluated. The impact of cellular glutathione on nanocarrier performance was investigated. Conclusion: Cu,S,N-CQD as a photothermal agent and DSF carrier showed synergy (combination index: 0.71) between chemotherapy and photothermal therapy. The nanocarrier simultaneously employed for in vitro cancer cell imaging due to its unique fluorescence properties.
Keyphrases