The Longitudinal Analysis of Convergent Antibody VDJ Regions in SARS-CoV-2-Positive Patients Using RNA-Seq.
Kate J LiuMonika A ZelazowskaKevin M McBridePublished in: Viruses (2023)
Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) is an ongoing pandemic that continues to evolve and reinfect individuals. To understand the convergent antibody responses that evolved over the course of the pandemic, we evaluated the immunoglobulin repertoire of individuals infected by different SARS-CoV-2 variants for similarity between patients. We utilized four public RNA-seq data sets collected between March 2020 and March 2022 from the Gene Expression Omnibus (GEO) in our longitudinal analysis. This covered individuals infected with Alpha and Omicron variants. In total, from 269 SARS-CoV-2-positive patients and 26 negative patients, 629,133 immunoglobulin heavy-chain variable region V(D)J sequences were reconstructed from sequencing data. We grouped samples based on the SARS-CoV-2 variant type and/or the time they were collected from patients. Our comparison of patients within each SARS-CoV-2-positive group found 1011 common V(D)Js (same V gene, J gene and CDR3 amino acid sequence) shared by more than one patient and no common V(D)Js in the noninfected group. Taking convergence into account, we clustered based on similar CDR3 sequence and identified 129 convergent clusters from the SARS-CoV-2-positive groups. Within the top 15 clusters, 4 contain known anti-SARS-CoV-2 immunoglobulin sequences with 1 cluster confirmed to cross-neutralize variants from Alpha to Omicron. In our analysis of longitudinal groups that include Alpha and Omicron variants, we find that 2.7% of the common CDR3s found within groups were also present in more than one group. Our analysis reveals common and convergent antibodies, which include anti-SARS-CoV-2 antibodies, in patient groups over various stages of the pandemic.
Keyphrases