Login / Signup

Clinical concept and relation extraction using prompt-based machine reading comprehension.

Cheng PengXi YangZehao YuJiang BianWilliam R HoganYonghui Wu
Published in: Journal of the American Medical Informatics Association : JAMIA (2023)
The proposed MRC models achieve state-of-the-art performance for clinical concept and relation extraction on the 2 benchmark datasets, outperforming previous non-MRC transformer models. GatorTron-MRC achieves the best strict and lenient F1-scores for concept extraction, outperforming previous deep learning models on the 2 datasets by 1%-3% and 0.7%-1.3%, respectively. For end-to-end relation extraction, GatorTron-MRC and BERT-MIMIC-MRC achieve the best F1-scores, outperforming previous deep learning models by 0.9%-2.4% and 10%-11%, respectively. For cross-institution evaluation, GatorTron-MRC outperforms traditional GatorTron by 6.4% and 16% for the 2 datasets, respectively. The proposed method is better at handling nested/overlapped concepts, extracting relations, and has good portability for cross-institute applications. Our clinical MRC package is publicly available at https://github.com/uf-hobi-informatics-lab/ClinicalTransformerMRC.
Keyphrases
  • deep learning
  • artificial intelligence
  • rna seq
  • working memory
  • machine learning
  • convolutional neural network